Multiblock Pore-Scale Modeling and Upscaling of Reactive Transport: Application to Carbon Sequestration

نویسندگان

  • Y. Mehmani
  • S. Bryant
چکیده

In order to safely store CO2 in depleted reservoirs and deep saline aquifers, a better understanding of the storage mechanisms of CO2 is needed. Reaction of CO2 with minerals to form precipitate in the subsurface helps to securely store CO2 over geologic time periods, but a concern is the formation of localized channels through which CO2 could travel at large, localized rates. Pore-scale network modeling is an attractive option for modeling and understanding this inherently pore-level process, but the relatively small domains of pore-scale network models may prevent accurate upscaling. Here, we develop a transient, single-phase, reactive pore-network model that includes reduction of throat conductivity as a result of precipitation. The novelty of this study is the implementation of a new mortar/transport method for coupling pore networks together at model interfaces that ensure continuity of pressures, species concentrations, and fluxes. The coupling allows for modeling at larger scales which may lead to more accurate upscaling approaches. Here, we couple pore-scale models with large variation in permeability and porosity which result in initial preferential pathways for flow. Our simulation results suggest that the preferential pathways close due to precipitation, but are not redirected at late times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reply to ‘ ‘ Comment on upscaling geochemical reaction rates using pore - scale network modeling ’ ’ by Peter C . Lichtner and Qinjun Kang

Our paper ‘‘Upscaling geochemical reaction rates using pore-scale network modeling’’ [1] presents a novel application of pore-scale network modeling to upscale mineral dissolution and precipitation reaction rates from the pore scale to the continuum scale, and demonstrates the methodology by analyzing the scaling behavior of anorthite and kaolinite reaction kinetics under conditions related to ...

متن کامل

Upscaling geochemical reaction rates using pore-scale network modeling

Geochemical reaction rate laws are often measured using crushed minerals in well-mixed laboratory systems that are designed to eliminate mass transport limitations. Such rate laws are often used directly in reactive transport models to predict the reaction and transport of chemical species in consolidated porous media found in subsurface environments. Due to the inherent heterogeneities of poro...

متن کامل

High Performance Computations of Subsurface Reactive Transport Processes at the Pore Scale

Field applications such as carbon sequestration drive the geochemistry of porous media far from equilibrium in relatively short time scales. In these short time frames, feedback processes between flow and geochemical reactions (e.g., mineral dissolution-precipitation) that take place at the pore scale are key to understanding the discrepancy between lab-derived reaction rates and the continuum ...

متن کامل

An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO2. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute t...

متن کامل

Recent Progresses in Lattice Boltzmann Simulations of Flow and Multi-component Reactive Transport in Porous Media

In recent years, the Lattice Boltzmann (LB) method has become a powerful numerical tool for simulating complex fluid flows and modeling physics and chemistry in fluids. Derived from the continuum Boltzmann equation used in statistical mechanics, the LB method has the advantage of describing non-equilibrium dynamics, especially in fluid-flow applications involving interfacial dynamics and comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012